Math 221: LINEAR ALGEBRA

Chapter 4. Vector Geometry §4-3. More on the Cross Product

 $\begin{tabular}{ll} Le & Chen 1 \\ Emory University, 2021 Spring \\ \end{tabular}$

(last updated on 03/01/2021)

NOTE: Much of this chapter is what you would learn in Multivariable Calculus. You might find it interesting/useful to read. But I will only cover the material important to this course.

Given three vectors
$$\vec{\mathbf{u}} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{bmatrix}$$
, $\vec{\mathbf{v}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \\ \mathbf{z}_1 \end{bmatrix}$, and $\vec{\mathbf{w}} = \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \\ \mathbf{z}_2 \end{bmatrix}$, it holds

that

$$\vec{u}\cdot(\vec{v}\times\vec{w})=\det\left[\begin{array}{ccc}\vec{u}&\vec{v}&\vec{w}\end{array}\right]=\det\left[\begin{array}{ccc}x_0&x_1&x_2\\y_0&y_1&y_2\\z_0&z_1&z_2\end{array}\right].$$

Proof.

Let
$$\vec{\mathbf{u}} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{bmatrix}$$
, $\vec{\mathbf{v}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \\ \mathbf{z}_1 \end{bmatrix}$, and $\vec{\mathbf{w}} = \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \\ \mathbf{z}_2 \end{bmatrix}$.

Proof.

Let
$$\vec{\mathbf{u}} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$$
, $\vec{\mathbf{v}} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$, and $\vec{\mathbf{w}} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$. Then
$$\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} \cdot \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

$$= x_0 (y_1 z_2 - z_1 y_2) - y_0 (x_1 z_2 - z_1 x_2) + z_0 (x_1 y_2 - y_1 x_2)$$

$$= x_0 \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} - y_0 \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} + z_0 \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix}$$

$$= \begin{vmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ z_0 & z_1 & z_2 \end{vmatrix}.$$

Let \vec{u}, \vec{v} and \vec{w} be in \mathbb{R}^3 .

1. $\vec{u} \times \vec{v}$ is a vector.

- 1. $\vec{u} \times \vec{v}$ is a vector.
- 2. $\vec{\mathbf{u}} \times \vec{\mathbf{v}}$ is orthogonal to both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

- 1. $\vec{u} \times \vec{v}$ is a vector.
- 2. $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} .
- 3. $\vec{\mathbf{u}} \times \vec{\mathbf{0}} = \vec{\mathbf{0}}$ and $\vec{\mathbf{0}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.

- 1. $\vec{u} \times \vec{v}$ is a vector.
- 2. $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} .
- 3. $\vec{\mathbf{u}} \times \vec{\mathbf{0}} = \vec{\mathbf{0}}$ and $\vec{\mathbf{0}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.
- 4. $\vec{\mathbf{u}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.

Let \vec{u} , \vec{v} and \vec{w} be in \mathbb{R}^3 .

1. $\vec{u} \times \vec{v}$ is a vector.

5. $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = -(\vec{\mathbf{v}} \times \vec{\mathbf{u}})$.

- 2. $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} .
- 3. $\vec{\mathbf{u}} \times \vec{\mathbf{0}} = \vec{\mathbf{0}}$ and $\vec{\mathbf{0}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.
- 4. $\vec{\mathbf{u}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.

- 1. $\vec{u} \times \vec{v}$ is a vector.
- 2. $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} .
- 3. $\vec{\mathbf{u}} \times \vec{\mathbf{0}} = \vec{\mathbf{0}}$ and $\vec{\mathbf{0}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.
- 4. $\vec{\mathbf{u}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.
- 5. $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = -(\vec{\mathbf{v}} \times \vec{\mathbf{u}}).$
- 6. $(k\vec{u}) \times \vec{v} = k(\vec{u} \times \vec{v}) = \vec{u} \times (k\vec{v})$ for any scalar k.

Let $\vec{\mathbf{u}}, \vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ be in \mathbb{R}^3 .

- 1. $\vec{u} \times \vec{v}$ is a vector.
- 2. $\vec{\mathbf{u}} \times \vec{\mathbf{v}}$ is orthogonal to both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.
- 3. $\vec{\mathbf{u}} \times \vec{\mathbf{0}} = \vec{\mathbf{0}}$ and $\vec{\mathbf{0}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.
- 4. $\vec{\mathbf{u}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.

7. $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$.

- 5. $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = -(\vec{\mathbf{v}} \times \vec{\mathbf{u}}).$
- 6. $(k\vec{u}) \times \vec{v} = k(\vec{u} \times \vec{v}) = \vec{u} \times (k\vec{v})$ for any scalar k.

Let $\vec{\mathbf{u}}, \vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ be in \mathbb{R}^3 .

8. $(\vec{v} + \vec{w}) \times \vec{u} = \vec{v} \times \vec{u} + \vec{w} \times \vec{u}$.

1.
$$\vec{u} \times \vec{v}$$
 is a vector.

2. $\vec{\mathbf{u}} \times \vec{\mathbf{v}}$ is orthogonal to both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

.
$$\mathbf{u} \times \mathbf{v}$$
 is orthogonal to both \mathbf{u} and \mathbf{v} .

3.
$$\vec{\mathbf{u}} \times \vec{\mathbf{0}} = \vec{\mathbf{0}}$$
 and $\vec{\mathbf{0}} \times \vec{\mathbf{u}} = \vec{\mathbf{0}}$.

$$4. \ \vec{\mathrm{u}} \times \vec{\mathrm{u}} = \vec{0}.$$

$$5. \ \vec{\mathbf{u}} \times \vec{\mathbf{v}} = -(\vec{\mathbf{v}} \times \vec{\mathbf{u}}).$$

$$\vec{v} \cdot (\vec{k}\vec{u}) \times \vec{v} = \vec{k}(\vec{u} \times \vec{v}) = \vec{u} \times (\vec{k}\vec{v}) \text{ for any scalar k.}$$

6.
$$(k\vec{u}) \times \vec{v} = k(\vec{u} \times \vec{v}) = \vec{u} \times (k\vec{v})$$
 for any scalar k.

6.
$$(k\vec{u}) \times \vec{v} = k(\vec{u} \times \vec{v}) = \vec{u} \times (k\vec{v})$$
 for any scalar k.
7. $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$.

Theorem (The Lagrange Identity)

If $\vec{u}, \vec{v} \in \mathbb{R}^3$, then

, then
$$||\vec{u}\times\vec{v}||^2 = ||\vec{u}||^2 ||\vec{v}||^2 - (\vec{u}\cdot\vec{v})^2.$$

Theorem (The Lagrange Identity)

If $\vec{u}, \vec{v} \in \mathbb{R}^3$, then

$$||\vec{u} \times \vec{v}||^2 = ||\vec{u}||^2 ||\vec{v}||^2 - (\vec{u} \cdot \vec{v})^2.$$

Proof.

Write
$$\vec{u} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, then both sides are equal to
$$(a_1b_2 - a_2b_1)^2 + (a_1b_3 - a_3b_1)^2 + (a_2b_3 - a_3b_2)^2 .$$

Work out these by yourself!

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta,$$

we have

$$\begin{aligned} ||\vec{\mathbf{u}} \times \vec{\mathbf{v}}||^2 &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^2 \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \cos^2 \theta \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 (1 - \cos^2 \theta) \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \sin^2 \theta. \end{aligned}$$

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta,$$

we have

$$\begin{aligned} ||\vec{\mathbf{u}} \times \vec{\mathbf{v}}||^2 &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^2 \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \cos^2 \theta \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 (1 - \cos^2 \theta) \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \sin^2 \theta. \end{aligned}$$

Taking square roots on both sides yields,

$$||\vec{\mathbf{u}} \times \vec{\mathbf{v}}|| = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \sin \theta.$$

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta,$$

we have

$$\begin{aligned} ||\vec{\mathbf{u}} \times \vec{\mathbf{v}}||^2 &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^2 \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \cos^2 \theta \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 (1 - \cos^2 \theta) \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \sin^2 \theta. \end{aligned}$$

Taking square roots on both sides yields,

$$||\vec{\mathbf{u}} \times \vec{\mathbf{v}}|| = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \sin \theta.$$

Note that since $0 \le \theta \le \pi$, $\sin \theta \ge 0$.

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta,$$

we have

$$\begin{split} ||\vec{\mathbf{u}} \times \vec{\mathbf{v}}||^2 &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^2 \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 - ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \cos^2 \theta \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 (1 - \cos^2 \theta) \\ &= ||\vec{\mathbf{u}}||^2 ||\vec{\mathbf{v}}||^2 \sin^2 \theta. \end{split}$$

Taking square roots on both sides yields,

$$||\vec{\mathbf{u}} \times \vec{\mathbf{v}}|| = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \sin \theta.$$

Note that since $0 \le \theta \le \pi$, $\sin \theta \ge 0$.

If $\theta=0$ or $\theta=\pi$, then $\sin\theta=0$, and $||\vec{\mathrm{u}}\times\vec{\mathrm{v}}||=0$. This is consistent with our earlier observation that if $\vec{\mathrm{u}}$ and $\vec{\mathrm{v}}$ are parallel, then $\vec{\mathrm{u}}\times\vec{\mathrm{v}}=\vec{\mathrm{0}}$.

Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{R}^3 , and let θ denote the angle between \vec{u} and \vec{v} .

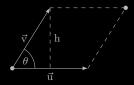
- 1. $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$, and is the area of the parallelogram defined by \vec{u} and \vec{v} .
- 2. \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v} = \vec{0}$.

Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{R}^3 , and let θ denote the angle between \vec{u} and \vec{v} .

- 1. $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$, and is the area of the parallelogram defined by \vec{u} and \vec{v} .
- 2. \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v} = \vec{0}$.

Proof. (area of parallelogram)

The area of the parallelogram defined by \vec{u} and \vec{v} is $||\vec{u}||h$, where h is the height of the parallelogram.

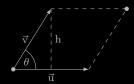


Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{R}^3 , and let θ denote the angle between \vec{u} and \vec{v} .

- 1. $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$, and is the area of the parallelogram defined by \vec{u} and \vec{v} .
- 2. \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v} = \vec{0}$.

Proof. (area of parallelogram)

The area of the parallelogram defined by \vec{u} and \vec{v} is $||\vec{u}||h$, where h is the height of the parallelogram.



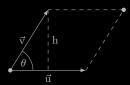
Since $\sin \theta = \frac{h}{||\vec{\mathbf{y}}||}$, we see that $h = ||\vec{\mathbf{y}}|| \sin \theta$.

Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{R}^3 , and let θ denote the angle between \vec{u} and \vec{v} .

- 1. $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$, and is the area of the parallelogram defined by \vec{u} and \vec{v} .
- 2. \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v} = \vec{0}$.

Proof. (area of parallelogram)

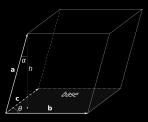
The area of the parallelogram defined by \vec{u} and \vec{v} is $||\vec{u}||h$, where h is the height of the parallelogram.



Since $\sin\theta=\frac{h}{||\vec{v}||}$, we see that $h=||\vec{v}||\sin\theta$. Therefore, the area is $||\vec{u}||\ ||\vec{v}||\sin\theta.$

The volume of the parallelepiped determined by the three vectors \vec{b} , \vec{c} , and \vec{a} in \mathbb{R}^3 is

$$|\vec{a} \cdot (\vec{b} \times \vec{c})|$$
.



Proof.

Volume = base area $\times h$, where base area = $|\vec{b} \times \vec{c}|$ and the height $h = |\vec{a}| |\cos(\alpha)|$. Hence,

$$\mathsf{Vol} = |\vec{b} \times \vec{c}| \ |\vec{a}| |\cos(\alpha)| = |(\vec{b} \times \vec{c}) \cdot \vec{a}|.$$

Find the area of the triangle having vertices A(3,-1,2), B(1,1,0) and C(1,2,-1).

Find the area of the triangle having vertices A(3,-1,2), B(1,1,0) and C(1,2,-1).

Solution

The area of the triangle is half the area of the parallelogram defined by \overrightarrow{AB} and \overrightarrow{AC} .

Find the area of the triangle having vertices A(3, -1, 2), B(1, 1, 0) and C(1, 2, -1).

Solution

The area of the triangle is half the area of the parallelogram defined by \overrightarrow{AB}

and
$$\overrightarrow{AC}$$
. $\overrightarrow{AB} = \begin{bmatrix} -2\\2\\-2 \end{bmatrix}$ and $\overrightarrow{AC} = \begin{bmatrix} -2\\3\\-3 \end{bmatrix}$.

Find the area of the triangle having vertices A(3, -1, 2), B(1, 1, 0) and C(1, 2, -1).

Solution

The area of the triangle is half the area of the parallelogram defined by \overrightarrow{AB}

and
$$\overrightarrow{AC}$$
. $\overrightarrow{AB} = \begin{bmatrix} -2 \\ 2 \\ -2 \end{bmatrix}$ and $\overrightarrow{AC} = \begin{bmatrix} -2 \\ 3 \\ -3 \end{bmatrix}$. Therefore

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix},$$

Find the area of the triangle having vertices A(3, -1, 2), B(1, 1, 0) and C(1, 2, -1).

Solution

The area of the triangle is half the area of the parallelogram defined by \overrightarrow{AB}

and
$$\overrightarrow{AC}$$
. $\overrightarrow{AB} = \begin{bmatrix} -2\\2\\-2 \end{bmatrix}$ and $\overrightarrow{AC} = \begin{bmatrix} -2\\3\\-3 \end{bmatrix}$. Therefore

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix},$$

so the area of the triangle is $\frac{1}{2}||\overrightarrow{AB} \times \overrightarrow{AC}|| = \sqrt{2}$.

Find the volume of the parallelepiped determined by the vectors

$$\vec{\mathbf{u}} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \, \vec{\mathbf{v}} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \, \text{and } \vec{\mathbf{w}} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}.$$

Find the volume of the parallelepiped determined by the vectors

$$\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \ \vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \ \text{and} \ \vec{\mathbf{w}} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}.$$

Solution

The volume of the parallelepiped is

$$|\vec{w} \cdot (\vec{u} \times \vec{v})| = \left| \det \left[\begin{array}{ccc} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 2 & -1 \end{array} \right] \right| = 2.$$